Computing Equilibria of Semi-algebraic Economies Using Triangular Decomposition and Real Solution Classification

نویسندگان

  • Xiaoliang Li
  • Dongming Wang
چکیده

In this paper, we are concerned with the problem of determining the existence of multiple equilibria in economic models. We propose a general and complete approach for identifying multiplicities of equilibria in semi-algebraic economies, which may be expressed as semi-algebraic systems. The approach is based on triangular decomposition and real solution classification, two powerful tools of algebraic computation. Its effectiveness is illustrated by two examples of application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-algebraic Description of the Equilibria of Dynamical Systems

We study continuous dynamical systems defined by autonomous ordinary differential equations, themselves given by parametric rational functions. For such systems, we provide semi-algebraic descriptions of their hyperbolic and non-hyperbolic equilibria, their asymptotically stable hyperbolic equilibria, their Hopf bifurcations. To this end, we revisit various criteria on sign conditions for the r...

متن کامل

Computing with semi-algebraic sets: Relaxation techniques and effective boundaries

We discuss parametric polynomial systems, with algorithms for real root classification and triangular decomposition of semi-algebraic systems as our main applications. We exhibit new results in the theory of border polynomials of parametric semi-algebraic systems: in particular a geometric characterization of its “true boundary” (Definition 1). In order to optimize the corresponding decompositi...

متن کامل

Solving Parametric Polynomial Systems by RealComprehensiveTriangularize

In the authors’ previous work, the concept of comprehensive triangular decomposition of parametric semi-algebraic systems (RCTD for short) was introduced. For a given parametric semi-algebraic system, say S, an RCTD partitions the parametric space into disjoint semialgebraic sets, above each of which the real solutions of S are described by a finite family of triangular systems. Such a decompos...

متن کامل

Complete Solution Classification for the Perspective-Three-Point Problem

In this paper, we use two approaches to solve the Perspective-Three-Point (P3P) problem: the algebraic approach and the geometric approach. In the algebraic approach, we use Wu-Ritt’s zero decomposition algorithm to give a complete triangular decomposition for the P3P equation system. This decomposition provides the first complete analytical solution to the P3P problem. We also give a complete ...

متن کامل

Cylindrical Algebraic Decomposition in the RegularChains Library

Cylindrical algebraic decomposition (CAD) is a fundamental tool in computational real algebraic geometry and has been implemented in several software. While existing implementations are all based on Collins’ projection-lifting scheme and its subsequent ameliorations, the implementation of CAD in the RegularChains library is based on triangular decomposition of polynomial systems and real root i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1308.5029  شماره 

صفحات  -

تاریخ انتشار 2013